Assessing Ship Movements Using Volunteered Geographic Information

age Credit: Mike Baird, :kr.com/photos/mikebaird M S C

Shaun Walbridge walbridge@lifesci.ucsb.edu

Goals

- Background on ship data
- Fusing volunteered data
- Cover relevant Ecological models: strikes, noise, groundings
- The future: networks

The largest cumulative impacts:

Climate Change

Maritime Trade

Lloyds of London, 2007

Ecological Effects

- Invasive Species ballast water
- Emissions 5% global GHG, 25% NOx; 60,000 deaths yr⁻¹
- Direct Pollution sewage, marine debris, gray water

Ship Strikes

Noise Pollution

Ship Groundings

Voluntary Observing Ship (VOS) Fleet

- Intent is ocean climate
- Volunteered, 5–15% of ships
- No ship type in 56% of records
- Here, records from 1991-2011 used

Pretty map, pretty poor for analysis

Automatic Identification System (AIS)

- GPS based, high spatial accuracy (~I0m) and high temporal frequency
- Mandated on large vessels and passenger ships
- Intent is safety
- Radio based, real-time

Attributes: ship id (x,y) heading type speed

AIS: Nov, 2011

Green:Fishing6.8mBlue:Tankers31mRed:Cargo48m

VOS: 2003-2011

AIS: Cargo Ships Nov, 2011

AIS Density Maps Nov 2010-Dec 2011

Cargo

Maersk may use channel, most don't

Fused Data

- Observations (426 GB):
 AIS: 2.37 Billion, 15 months, 2010-2011
 VOS: 92.4 Million, 1991-2011
- Related data: 200,000 vessels, 5,000 ports
- Linkage of records across datasets

Ship Records

Want to know: which vessel is this? What kind?

Attributes useful for ecological questions:

Noise: engine type, length, type Ballast: type, length Strikes: Maximum speed, type, draft

Source	Code	Records	Cross-linked	Attributes
Digital Seas	DS	212166	68002	name, IMO, MMSI, callsign, type, width, length
FCC ¹ ULS ²	FCC	319964	24531	name, MMSI, callsign, class, gross gonnage, length
ITU ³ MARS ⁴	ITU	372183	75928	name, IMO, MMSI, callsign, class, owner, gross tonnage
VesselTracker	VT	126534	83372	name, IMO, MMSI, callsign, class, length

Ship Records

Record Linkage: Use fuzzy reasoning to cross-link records from differing sources

Probabilistic pairwise combinations between source pairs:

Comparison	Name	IMO	MMSI	Callsign	Туре	Length	Confidence
А	MONIUSZKO	8513730	248623000	9HLM6	Cargo Ship	159	100
А	Moniuszko	8513730	248623000	9HLM6	Cargo Ship	159	100
В	ATLAS		372913000	3EVP4		190	93
В	Atlas	9222340	372913000	3EVP4	Cargo Ship	155	93

205,030 linked pairs. Merged pairs into validated individual vessels, AND link our observations to these records

Vessel Speeds by Type

Vessel Movement Models

Building individual ship tracks

Track creation:

- geographic filtering
- great circle distances

Rasterization:

Merge by vessel type

Ship: PURKI Country: Malta IMO: 9004217 MMSI: 248495000 Callsign: 9HA2386 Length: 147m Width: 26m Type: cargo ship Obs: 24225

Initial views

Density function:

$$s = \frac{R_{AIS}}{max(R_{AIS})} + \frac{R_{VOS}}{max(R_{VOS})}$$

Speed:

$$\bar{s} = \begin{cases} \sum_{i=0}^{n} s \\ \frac{i=0}{x} \\ 0 \end{cases} \quad s \ge 10$$

Cargo Tracks Nov 2010-Dec 2011

Europe

Vessel Densities by Type

Tanker

Legend Speed Knotc/hr High .20

Ship Strikes

Cargo, Average speed: >= 15 Kts <15 Kts

Response of Commercial Ships to a Voluntary Speed Reduction Measure: Are Voluntary Strategies Adequate for Mitigating Ship-Strike Risk?

MEGAN F. MCKENNA,^{1,2} STEPHEN L. KATZ,³ CHRISTOPHER CONDIT,⁴ AND SHAUN WALBRIDGE⁵

d) Tankers 2007 LNM (41 days, 36 ships)

b) Cargo Ships 2008 LNM (159 days, 622 ships)

c) Cargo Ships 2009 LNM (141 days, 371 ships)

e) Tankers 2008 LNM (159 days, 82 ships)

f) Tankers 2009 LNM (141 days, 58 ships)

McKenna et al, 2012

Noise Pollution: NOAA WG

NOAA, Cornell Ornithology

Noise Pollution: NOAA WG

Current model using VOS; next iteration can use the movement model discussed today

Noise Pollution: NOAA WG

New York Times, 2012-12-11 http://nyti.ms/UxKuqK

High Traffic Protected Areas

World Database on Protected Areas (WDPA):

- 7481 Marine
- Top 50 shown for traffic volume

Ligurian Sea Sanctuary, 341d ago

120

Image Credit: DigitalGlobe

Future Work: Simplification

- Many observations, can we simplify?
- Extremes of movement models:

2D Random Walk

Constrained Network

Shipping: attributes of both

Movement models

- Common in landscape ecology & geography
- Predict distributions and trajectories from limited observations
- Capture travel time and effort instead of assuming great circle distances

Brownian bridge kernel home range

Circuit-based movement model

Shipping as a geographic network

Ports (nodes)
Junctions (nodes)
Paths (edges)

Edges:

travel time

ships traversed economic cost environmental cost?

With global routes: evaluate permutations

apply per-unit pricing based on ecological knowledge

Thanks

NCEAS The Gaines Lab

Be Stev

Jennifer Balch, Ben Best, Ben Halpern, Carrie Kappel, Steve Katz, Megan McKenna, Jessica Phillips, Jai Ranganathan, Oliver Soong, Dawn Wright